

Searches for New Physics in the Top Quark Sector at the Tevatron

Ford Garberson (Yale University)

Introduction

- Thousands of "top quarks" have been produced at the Tevatron
 - How do we test if they are Standard Model?

Typical tt Production process at Tevatron

- The direct approach:
 - Search data for presence of specific non-SM processes
 - Comparison with simulation of new processes

- The indirect approach
 - Measure properties and compare with SM expectations
 - Top mass, charge, spin, cross section, kinematics

Introduction

- Thousands of "top quarks" have been produced at the Tevatron
 - How do we test if they areStandard Model?

Covered in this talk and the next one

- The direct approach:
 - Search data for presence of specific non-SM processes
 - Comparison with simulation of new processes

Typical tt Production process at Tevatron

The indirect approach

Dedicated Talks in other Sessions

Top ge, spin, cross section, kinematics

Identification of Top Quarks

What we expect if the Standard Model is correct ...

Tops Almost Always Decay to Wb ~100%

of the time

- Final states depend on W decay modes. Expect ...
 - 2 *b*-jets
 - Can tag them based on lifetime, etc
 - 0, 2, or 4 other jets
 - Usually study modes with 1 or 2 leptons (less background)
 - Plus missing energy from neutrino(s)

Searches for Massive X=>tt

- A number of scenarios predict massive particles decaying to tt
 - Searches: reconstruct invariant tt̄ mass, search for excesses beyond standard model

- D0 search: 3.6 fb⁻¹ in single lepton channel
 - Require isolated lepton, missing energy, at least three jets, one or more b-tagged
 - Allows a jet to be lost due to merging: especially important for massive X decays

D0 X=>tt Resonance Results

- Reconstruct tt invariant mass from four leading jets, MET
 - Use simulation of X=>tt̄ processes,
 Poisson probability for signal consistency:

$$P(\sigma, m) = \prod_{i=1}^{n_{bins}} e^{-\mu_i(\sigma, m)} \frac{\mu_i(\sigma, m)^{n_i}}{n_i!}$$

- Largest excess less than 2 sigma at X mass ~650 GeV
 - Set 95% confidence limits for various spin, width hypotheses for X particle

Invariant mass Predictions for SM $t\bar{t}$, X=> $t\bar{t}$ at different masses

D0 95% Limits on X=>tt Cross
Section for 3.6 fb⁻¹

CDF X=>tt Resonance Results

- CDF has recently done this search in the all-jets topdecay channel
 - Reduce QCD background with Neural Network Selection
 - Tests/systematics from many control regions
- M_{tt̄} reconstruction from matrix element + transfer functions technique
 - Described in detail in topmass talk

Invariant mass Predictions for SM $t\bar{t}$, X=> $t\bar{t}$ at different masses

CDF 95% Confidence limits on X=>tt

Cross section in All-Jet Channel (2.8 fb⁻¹)

Search for Stop Production

- Lightest stop quark may be too light to decay into top
 - Chargino may be light.
 - So CDF searches for $\, ilde{t}_1
 ightarrow b ilde{\chi}_1^+ \,$
 - If chargino is heavier then forbidden
 - So D0 searches for $\tilde{t}_1 \to b \tilde{\nu}^0 \bar{l}^+$

- D0 Search: require low Pt opposite sign muonelectron events
 - Very small Standard Model backgrounds
 - Reduce Z=>tau tau and fake QCD backgrounds:
 - Require MET > 18 GeV
 - Require that MET is not close to either lepton

D0: Search for Stop to Sneutrino Decays

- Search for excess in kinematic distributions
 - HT: scalar sum of jet pT
 - ST: HT + lepton pT + missing transverse energy
 - Example: for heavy stop expect high ST, low HT

No excess found

- Set limits using ROOT TLimit package
 - Assuming 100%
 branching ratio of stop to this decay channel

Expected Excesses at high ST

CDF: Search for Stop to Chargino Decays

 CDF searches for stop under light chargino scenario:

$$\tilde{t}\tilde{t} \rightarrow b\bar{b}l^-\bar{l}^+\nu\bar{\nu}\tilde{\chi}_1^0\tilde{\chi}_1^0$$

- Reconstruct stop masses
 - Approximations and chi2
 minimization to deal with
 under-constrained
 system
- No excess, set limits based on stop mass fit

Reconstructed Stop Quark Mass

CDF 2.7 fb⁻¹: Exclusion limits depend on Chargino mass and Chargino to Neutralino BR

Top Charge Asymmetry

- At LO expect (almost)
 equivalent directions for
 t and t̄ production
 - But at NLO, two effects cause t̄ to be produced preferentially in antiquark direction and vice versa

NLO Interferences that Cause Asymmetry

- An indirect search: is top quark asymmetry as expected?
 - Standard Model: expect $A_{fb} = 0.05 + -0.015$

$$A_{fb} = \frac{N_t(p) - N_t(\bar{p})}{N_t(p) + N_t(\bar{p})}$$

Results

Raw asymmetry ~0.10

- Subtract off backgrounds: 0.14
- Event selection biases Afb, and reconstruction of direction smears it
 - Correct and unfold to determine tt Afb in pp restframe. At 3.2 fb⁻¹:

$$A_{fb} = 0.193 \pm 0.065 \text{(stat)} \pm 0.024 \text{(syst)}$$

 Consistent with 0.9 fb⁻¹ published D0 result:

$$A_{fb} = 0.12 \pm 0.08(stat) \pm 0.01(syst)$$

Noticeable Asymmetry in Reconstructed +Charge Top Quark Rapidity

D0 Translates Afb Results into Exclusion limits on massive Z=>tt Rate

Search for ttH Production

- Cross section for Standard Model tt+Higgs production too small to observe at Tevatron
 - But sensitive to new physics scenarios
- Search in single-lepton tt
 sample
- Three variables to discriminate signal:
 - Six bins in #jets, #tagged jets
 - Use distribution of Sum HT in each bin

Data and Expectations for events with 4 jets, one *b*-tagged (background validation)

Data and Expectations for events with >= 5 jets, >=3 *b*-tagged (possible signal)

Extraction of Limits

- No signal excess found so set limits
 - Standard frequentist approach used by Higgs group
 - Also set limits on exotic physics scenario
 - Massive gluon coupling to heavy top quark

Diagram for Massive Gluon +heavy top Search

2.1 fb⁻¹ Expected and Observed Limits on SM ttH production

Phase-Space Excluded in Massive Gluon+Heavy top scenario

Search for t=>H+b

- Does top ever decay into charged Higgs?
 - D0, 1 fb⁻¹: Search in H⁺ => tau nu, H⁺ => cs decay channels

Counting experiment

- #events in channels based on number of jets, electrons, muons, taus, btags
- No excess seen, set limits on t => H+b BR as function of H+ mass, fraction of H+'s that decay tauonically or hadronically

#Observed Events in Four categories of decay channels. Red: Standard Model

BR Limits on t=>H⁺b, hadronic H⁺ decays. Yellow: 1-sigma SM Expectations.

Search for t=>H+b in NMSSM

LEP and D0 limits:

Unlikely that top decays to H⁺b under MSSM channel

Consider NMSSM scenario:

- H⁺ would decay into neutral Higgs, which is excluded at high mass
 - A=>bb̄ excluded, so search for:

$$t \to H^{\pm}b \to W^{\pm}Ab \to W^{\pm}b\tau\bar{\tau}$$

Final search in tt single lepton channel

Separate from SM tt
 it
 by searching for an extra low-pT isolated track (from a tau decay)

Backgrounds and Results

- Most challenging background:
 - tt̄ with extra track from underlying event
 - Model underlying event from jet-triggered data
 - Validate with Z+jet cross section measurement from fit to track-pT
- No excess signal
 - Set limits on NMSSM parameters (2.7 fb⁻¹)

Validation of Underlying Event Model: Fit to Z+Jet Cross Section

2.7 fb⁻¹ Limits on t=>H⁺b Branching Ratio Depending on NMSSM parameters

Conclusion

- Tevatron has produced enough top statistics for high-precision measurements
 - Possible to constrain many exotic physics scenarios
- Many direct searches for new physics have been performed:
 - No evidence of significant rate of heavy X=>tt̄
 - No evidence of supersymmetric tops being produced
 - No evidence of tops decaying to charged Higgs
- But still plenty of room for new physics
 - Top charge asymmetry larger than expected at both experiments (>2 sigma at CDF). More statistics being collected!
- Many more studies in next talk

CDF Stop Mass Procedure

- Challenge to reconstructing top quark mass:
 - System is underconstrained
 - Two invisible particles from each chargino decay
 - Approximation: treat each neutralino + neutrino as one massive pseudo-particle
- Pick hypothesis pseudoparticle momenta that best satisfy chi2 constraint
 - Sum over phi-directions of pseudo-particles, weighted by chi-square probability

Invariant "Pseudo-Particle" mass of Neutralino-Neutrino

Reconstructed Stop Quark Mass

CDF Stop Mass Fit And Limits

- Perform Minuit likelihood fit to reco-top mass
 - Construct test-statistic:

$$Q = \frac{L(data|signal + background)}{L(data|background \ only)}$$

- Use Q in fit to determine 95% confidence limits
 - Systematic uncertainties are nuisance parameters
 - Confidence limits depend on leptonic branching ratio, masses of susy particles

CDF 2.7 fb⁻¹ Exclusion Limits For Different Chargino Masses

Measurement Methodology

Work in single lepton channel

- Reconstruction: Determine parton assignment with chi2 minimization
- Lepton determines charges of each top
- Use hadronic top to determine direction
 - If anti-top then flip sign to determine top direction

Frame of reference is important!

- Could transform to tt-frame, but uncertainties are high
- Instead report A_{fb} in p̄p-frame
 - Dilution: A_{fb} expected ~30% smaller

Noticeable Asymmetry in Reconstructed +Charge Top Quark Rapidity

Must subtract backgrounds. Well modeled in sample with no *b*-tags.